Company Introduction

◆ Mission: SoC nanometer timing and synthesis technology leader
◆ Channels

Direct Offices:
USA: Silicon Valley
Southern California
Taiwan: Hsinchu

Distributors:
Japan (Marubeni), India (ICON),
China (OnePass Solutions),
Korea (ED&C), Israel (AST)
Incentia Product Offering

- **Logic, Low Power, DFT Synthesis solution**
 - DesignCraft, PowerCraft, TestCraft

- **Timing analysis solution**
 - TimeCraft: World fastest Static Timing Analyzer (STA)
 - TimeCraft-LOCV: Location Based OCV
 - TimeCraft-SSTA: Statistical STA
 - TimeCraft-SI: Signal Integrity
 - TimeCraft-PCA: Power Analysis
 - ConstraintCraft: Constraint Management

- **Design closure solution**
 - ECOCraft-Timing: Hold-time & Setup-time ECO
 - ECOCraft-Power: Leakage power ECO
How Incentia Products Fit into Design Flow

IC Design Flow

1. **RTL**
 - **Logic Synthesis**
 - Netlist
 - **Placement & Route**
 - Netlist, DEF/GDSII
 - **RC Extraction**
 - Netlist, SPEF
 - **Delay Calculation**
 - Timing, Power Analysis
 - **Meet Constraints?**
 - Yes → OK
 - No
 - **Hold-Time, Power ECO**

Incentia Products

- **DesignCraft** (Logic, DFT, Low Power Synthesis)
- **Complete Timing Analysis**
 - TimeCraft (Static Timing Analysis)
 - TimeCraft–LOCV (90, 65, 45 nm)
 - TimeCraft–SSTA (45, 30nm)
 - TimeCraft–SI (Signal Integrity Analysis)
 - TimeCraft–PCA (Power Analysis)
 - ConstraintCraft (Constraint Mgmt, Validation)

- **Design Closure**
 - ECOCraft-Timing (Hold-time & Setup=time ECO)
 - ECOCraft-Power (Leakage Power ECO)
TestCraft Key Features

- One pass logic and DFT synthesis
- Top-down or bottom-up design methodology
- Scan cell replacement
- DFT rule checking
- Automatic fixing of DFT rule violations
- Scan chain ordering, stitching, balancing
- Smooth integration to Incentia low power solution
- Smooth interface to 3rd-party ATPG tools: STIL format
 - Mentor (FastScan), Synopsys (TetraMax), SynTest (TurboScan)
- Shorter downstream ATPG runtime
 - More DFT violations can be fixed during DFT synthesis
Typical DFT Flow (RTL or Netlist Input)

Import Data (Design, Library)

Set Design Constraints

Define Scan Chain Architecture

Analyze Design for DFT

No

Result OK?

Yes

Perform Scan Optimization

Pre-show Scan Chains

Stitch Scan Chains

Report Scan Info

No

Result OK?

Yes

Generate Outputs

compile_lib, read_design, link_design
make_unique, set target_lib

Load SDC constraints

set_scan_implementation
set_dft_rule_option
set_scan_port, set_scan_route
set_scan_cell_connect_style

check_design
check_dft_rule

optimize -scan (for RTL input)

set_scan_implementation -stitch false
implement_scan
pre_show_dft

set_scan_implementation -stitch true
implement_scan
report_dft

write_design
write_dft_interface
Fastest Runtime: STA-based Technology

- Fastest run time: up to 10X faster than any other solutions!
 - Key technology: STA based static analysis (vs. event driven approach used in other tools)
 - Bigger designs show bigger speedup
Efficient Scan Cell Replacement

◆ Scan cell replacement
 ■ Preserve timing quality of pre-DFT design

\[\text{scan}_\text{in} \rightarrow \text{d} \rightarrow \text{q} \rightarrow \text{scan}_\text{enable} \rightarrow \text{clk} \rightarrow \text{q/scan}_\text{out} \]
Scan Chain Planning

◆ Rich controls in scan chain ordering & stitching
 ■ Number of scan chains
 ■ Chain length
 ■ Balanced chaining
 ■ Chaining styles
 • Chain with distinctive clock domain: (R1), (R2), (R3)
 • Chain with merged clocks: (R1, R2, R3)
 • Chain with merged edges: (R1), (R2, R3)
 • Chain with merged clocks but not edges: (R1, R2), (R3)
 • Lock-up latch insertion to avoid timing issues
 • Automatic & user-control
Scan Chaining: Example

- **Chain by distinctive clock domain**

- **Chain by merged clocks**

Inserted lock-up latch
Clock Tree Based Scan Chaining

◆ Clock tree based scan ordering and chaining
 ■ Clock tree grouping and ordering
 ■ Example: buf1 group first, following by buf2, and buf3 groups

One possible result if clock tree information is not considered

Clock tree information is given {buf1/o, buf2/o, buf3/o} to guide scan chaining
Scan Chain Re-chaining

- Scan chain re-chained

- Re-balance scan chains on existing scan chains
DFT Rule Checking & Fixing

◆ DFT rule violations will cause
 ▪ Shorter or incorrect scan chains
 ▪ Lower fault coverage or failure in later ATPG

◆ Checking of over 25 rule violations
 ▪ Clock, latch, asynchronous signals, gated clock, tri-state bus, bi-direction port, etc.

◆ Automatic fixing of over 15 rule violations
 ▪ MUX-style, disable-style

◆ Fastest runtime for checking & fixing
 ▪ Unique patented STA-bases approach
Automatic Fixing of DFT Rule Violations

◆ DFT Violation Fixing (MUX-Style)
- Uncontrollable, Gated, Generated Clock Violation Fixing
- Uncontrollable Asynchronous Set/Reset Violation Fixing
Automatic Fixing of DFT Rule Violations (Cont)

DFT Violation Fixing (Disable-Style)
- Uncontrollable, Gated, Generated Clock Violation Fixing
- Uncontrollable Asynchronous Set/Reset Violation Fixing
Automatic Fixing of DFT Rule Violations (Cont)

◆ Same Clock Source Fixing
 ■ This fixing can help to reduce buffer insertion by clock tree synthesis.

![Diagram showing Same Clock Source Fixing]

Default Fixing

CTS Specific Fixing
Automatic Fixing of DFT Rule Violations (Cont)

Cross Hierarchy Fixing

- Reduce the logic count, thus reduce area

![Diagram showing cross hierarchy fixing process]

- FIX VIOLATION
- FIX VIOLATION
- FIX
- VIOLATION
- VIOLATION
- VIOLATION
Testability Estimation

- Testability estimator before ATPG
- Test Point Insertion & Testability Report
 - Insert test point to hard observe or control point
 - Report hard to observe or control point

<table>
<thead>
<tr>
<th>CONTROLLABILITY</th>
<th>Level of Logics</th>
<th>Net</th>
<th>Terminal Pin (Starting pt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>N340</td>
<td>reg2/SO</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>N23</td>
<td>reg1/SO</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>N3</td>
<td>Top_in1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBSERVABILITY</th>
<th>Level of Logics</th>
<th>Net</th>
<th>Terminal Pin (Ending pt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>N55</td>
<td>reg7/D</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>N402</td>
<td>reg6/CK</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>N2</td>
<td>Top_out6</td>
</tr>
</tbody>
</table>
Test Point Insertion

- Insert test points at hard to control or observe locations

Inserting control test point
=> A Reg & a MUX are added

Inserting observe test point
=> A MUX is added
Observation Test Point Compression

- Compress multiple observation test points into one test point logic to reduce the logic
 - Can control # of compressed points
 - Example: compress obs1, obs2, obs3 into 1 test point logic
Sharing Control & Observe Test Point

- Control & observe logic at the same point can be shared
- Example: NET1 is hard to control & observe
Bypass Logic

◆ Adding bypass logic for memory blocks or black boxes
 - Insert observable and/or controllable logics to increase testability

For Observability

Din_1
 .
 Din_n
Dout_1
 .
 Dout_n

For Controllability

SFF_OBS

SFF_CTRL

DSI SE SO
READ
WRITE
CLK

Q

1'b0

0
1

x
y

test_mode

Confidential
Seamless DFT and Low Power Integration

◆ Smooth DFT & low power integration
 ■ Automatic DFT insertion for clock gating in Incentia environment
Multiple Supply Voltages

- DFT for multiple supply voltages
 - Automatic level shifter insertion when chaining registers from different voltage domains
 - Scan chain order by voltages

Diagram:
- 1.2v circuit with scan_in and scan_out
- 1.0v circuit with auto level shifter insertion
- 0.8v circuit with auto level shifter insertion
Enhancement for Low Power

- CPF interface support
- Auto library reading and target library link when sourcing CPF script
- Control of scan-chain crossing voltage domain
- Level-shifter Insertion control of scan-chain crossing voltage domain.
- Level shifter covering IO port and special voltage domain through IO of certain IP
- Support multi-bit scan cell to further reduce area/power
TestCraft Runtime Data

- Perform DFT rule checking, fixing, chaining, and reporting
- Runs 2x to 8x faster than others

<table>
<thead>
<tr>
<th>Design</th>
<th>Logic Instances</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design1</td>
<td>1.4M</td>
<td>90nm</td>
</tr>
<tr>
<td>Design2</td>
<td>2.8M</td>
<td>90nm</td>
</tr>
<tr>
<td>Design3</td>
<td>5.4M</td>
<td>65nm</td>
</tr>
<tr>
<td>Design4</td>
<td>6.2M</td>
<td>65nm</td>
</tr>
</tbody>
</table>

Runtime speedup ratio
Summary

◆ Complete integrated synthesis solution
 ■ Logic, Low Power, DFT
◆ Very fast runtime with big capacity
 ■ 2X to 5X faster than other solutions!
◆ Most aggressive reduction in chip area and power consumption
 ■ Up to 30% less synthesized gate counts
 ■ Up to 20% less power
◆ Many customer tape-outs in different applications
 ■ Communication, networking, wireless, consumer electronics, multi-media, graphics
 ■ Easy to adopt