Model Diagnoser™

Ultimate Verification, Quality Assurance and Interactive Debugging for .Lib Model of Cell Library
Agenda

- Introduction
- Model Diagnoser Flow
- Setup/hold time diagnosis for function/noise violations
- Repairing library model from function/noise violations
- Inaccuracy diagnosis by library model comparison
- Function verification between views of library model
- CCS consistency check of library model
- Interactive Debugging
- The Conclusion
Legend’s Products

◆ IP Library Verification/Characterization Products
 ● Model Diagnoser™: *Cell Library QA, Diagnosis and Debugging*
 ● Charflo-Cell!™: *Automatic Cell/IO Library Characterization*
 ● Charflo-Memory!™: *Automatic Memory Characterization*

◆ Circuit Simulation Products
 ● MSIM®: *Accurate-Spice Simulator for Analog/RF/Mixed-Signal IC and IP, LCD, and PCB/IBIS/Package*
 ● PCB Design Manager: *Integrated Schematic & Simulation Environment with Test Bench Automation*
 ● Turbo-MSIM™: *Fast-Spice Simulator*
The Problems
Standard /IO Cell Library Modeling

- The .Lib model of standard / IO cell library may be:
 - Incorrectly modeled or characterized
 - Inappropriately applied at new PVTs

- Need QA process to assure the .Lib timing model:
 - No functional failures shall be resulted
 - Noise on output pins shall be within the margin
 - Timing, power and noise models are valid in accuracy
 - No over-excessive timings degrading speed seriously

- Need repairing .Lib model to meet the QA criteria
The Solutions
Model Diagnoser™ Functions

- Setup/hold time diagnosis for function/noise violations
- Repairing library model from function/noise violations
- Inaccuracy diagnosis by library model comparison
- Function verification between views of library model
- CCS consistency check of library model
- Interactive Debugging
The Necessities
Model Diagnoser on top of Characterization

- Use ultimate validation, different from characterization
 - Verify setup/hold time by directly plugging into final simulation, instead of bi-section with error tolerances

- Check internal nodes, not covered by characterization
 - Examine glitches and noise strengths on internal nodes, instead of ‘output pins only’ by simulator’s bi-section

- Trust but verify possible errors in characterization from
 - Characterization tools
 - Simulation tools
 - Human mistakes and manual settings
TSMC Selects Legend’s Model Diagnoser for Standard Cell Library Quality Assurance

http://www.legenddesign.com/BW/060909.shtml

"Legend’s Model Diagnoser can help locate the functional issues in the .lib models of TSMC 90nm and 65nm standard cell libraries. We are satisfied with the tool results, and continue to work with Legend to ensure our library quality for advanced nanometer technologies," said Tom Quan, deputy director of design service marketing at TSMC.
Model DiagnoserTM Flow

Model DiagnoserTM Flow

- Lib Model to be diagnosed
- Cell Library
- Circuit Netlists
- Configuration File
- Spice Models
- Circuit Simulator

- MSIM®
- Other Spice

- Diagnosis Control
- SpiceCut-CellTM Diagnosis Engine
- Model Repairing Engine

- Setup/hold Time Diagnosis
- Repairing Timing Model
- Inaccuracy Diagnosis
- Function Verification
- Consistency Check
- Interactive Debugging

- Function vs Spice netlist, Verilog, Vital
- Table Statistics
- Graphs
- CCS vs NLDM Receiver & Driver
- 5X~10X Productivity

Legend

Technology Leader in IP Characterization and IC/PCB Simulation
Setup/Hold Time Diagnosis
Function & Noise Check on Latch/Flip-flop

- Analyze the circuit of each cell by SpiceCut tool, and locate high-risk spots inside the cell.
- Build all possible state patterns based on functions and conditions in .Lib, and set up corresponding stimulus.
- Simulate the cell by applying setup/hold time, and min. pulse width from .Lib, with the stimulus built.
- Verify the simulation results for locating functional failures and noise violations (e.g. glitch)
- Locate over-excessive timings (e.g. min. clock width) to prevent from serious performance degrading
SpiceCut-Cell Functions
Circuit Analysis & Pattern Recognition

- Build circuit database of nodes and MOSFETs, and extract subcircuit configurations.
- Locate the high-risk nodes inside the cells to monitor for ensuring the modeling quality.
- Identify the measurable nodes inside the cells before tri-state output for complex I/O cell characterization.
- Perform pattern recognition over the circuits of standard cells, complex cells and customized cells.
‘Function’ Violation
Due to Insufficient Setup Time

In Original .Lib
Setup Time 0.1194ns
Failure!

Correct Setup Time
Setup Time 0.1603ns
Function!

Model Diagnoser™ can locate function failures in .Lib model.

Legend
Design Technology

Technology Leader in IP Characterization and IC/PCB Simulation
Output-Pin 'Glitch' Violation
Due to Insufficient Hold Time

The glitch is of 66% Vdd with the width 37ps.
Internal 'Glitch' Violation
Due to Insufficient Hold Time

The glitch is of 96% Vdd with the width 0.303ns.
Run-Statistics Examples
Function & Noise Check on Latch/Flip-flop

Diagnosing one cell library normally takes 2~4 hours

<table>
<thead>
<tr>
<th>Cell Library</th>
<th>Number of Latch & FlipFlop Cells</th>
<th>Add Margin 0.05ns/ 0.1ns/ 0.2ns</th>
<th>Violation-Free Margin to add</th>
</tr>
</thead>
<tbody>
<tr>
<td>40nm (857 cells)</td>
<td>158</td>
<td>Function Violation: 46/ 4/ 2 Glitch* Violation: 0/ 0/ 0</td>
<td>0.25ns</td>
</tr>
<tr>
<td>55nm (1084 cells)</td>
<td>294</td>
<td>Function Violation: 2/ 0/ 0 Glitch* Violation: 15/ 5/ 1</td>
<td>0.22ns</td>
</tr>
<tr>
<td>65nm (814 cells)</td>
<td>228</td>
<td>Function Violation: 28/ 0/ 0 Glitch* Violation: 13/ 0/ 0</td>
<td>0.1ns</td>
</tr>
<tr>
<td>90nm (837 cells)</td>
<td>251</td>
<td>Function Violation: 76/ 71/ 10 Glitch* Violation: 130/ 126/ 1</td>
<td>0.3ns</td>
</tr>
</tbody>
</table>

| Technology Leader in IP Characterization and IC/PCB Simulation |

* Report ‘Glitch Violation’ only when (1) glitch_height > 40% of Vdd (2) glitch_width > 20ps (3) glitch_height_in_V * glitch_width_in_ps > 20 V-ps
Repairing Library Model
To Prevent from Function/Noise Violations

- For setup/hold time & min pulse width in .Lib model, the margin shall be automatically adjusted to ensure:
 - No functional violations
 - No glitch violations on internal nodes and output pins
 - No over-excessive timings degrading performance seriously

- Margin increment can be by values or by percent
- Margin adjustment for tabular setup/hold time can be determined by the worst corner, by four extreme corners and the central, or by all entries of that table.
Repair .Lib Model
Add Margin 0.05ns to Setup Time

Cell SDFMQM8NA:

- State Pattern
 - se=0 sd=1 d1=0 s=0 d2=1
 - state(Q)=1

- State Pattern
 - se=0 sd=1 d1=0 s=1 d2=1
 - state(Q)=0

Pin 'S' Setup Rise

- '0' state
- '1' state

Setup Time 0.1194ns

No margin added

Setup Time 0.1694ns

0.05ns margin added

Failure!

Function!
Correct ‘Excessive Spike’ in .Lib
To Prevent from Serious Speed Degrading

◆ ‘Excessive Spike’ entry in the table of setup/hold time & min pulse width in .Lib model could cause
 ● Difficult to keep monotonic table as required by PrimeTime
 ● Large performance sacrifice (e.g. due to min clock width)

◆ Simulate the cell by applying the ‘reduced’ setup/hold time & min pulse width, i.e. adding ‘negative’ margin.

◆ At the various negative margins, verify the simulation results for locating functional ‘success’ without noise violations. Then, report the necessary corrections.
Inaccuracy Diagnosis
By Library Model Comparison

- Diagnose the inaccuracy of target library by comparing its .Lib model with the re-characterized one by using Model Diagnoser.
- The difference between the tables of parameters will be represented by:
 - Table report
 - Statistical report
 - 2D Graphical report
 - 3D Graphical report
Inaccuracy Report
Sorted Timing-Arc and Statistical Report

- Statistical report can be used for measuring overall quality of target library, at cell or parameter level.
2D/3D Graphic Report
Based on Statistics of Cell & Parameter

- 2D Graphic Report

Legend
Design Technology
Function Verification
Between Views of Library Models

- Check the consistency between function description (i.e. .FUNCTION statements) in .Lib and
 - Spice netlist at transistor level
 - Verilog descriptions
 - *Vital descriptions

- Report the difference of their derived state patterns

* Vital verification will be released in Q3, 2010
Extract Cell Functions
Directly from Spice Circuit Netlist

- Standard cells are normally by static designs. Their subcircuits and functions are quite straightforward.
- SpiceCut-Cell can partition/recognize those subcircuit patterns, and extract their corresponding functions.
- Example: Exclusive-OR (XOR) Cell

\[C = -B; \quad F = -C = B; \quad E = -A; \]
\[D = C \times E + F \times (-E) \]
\[= (-B) \times (-A) + B \times A \]
\[Y = (-A) \times (-B) + A \times B \]
\[Y = A \oplus B \]
Verify Functions in .Lib
Against Functions Extracted from Circuits

- Extract the logic functions directly from cell circuit netlist by SpiceCut-Cell
- Validate the FUNCTION statement of each timing arc in the existed .Lib model, by comparing with those circuit-extracted ones.
- Confirm the specifications of related_pin, timing_sense, when, and sdf_cond etc. in the existed .Lib model.
CCS Model Check

- CCS Receiver Model Consistency Check
 Compare CCS’ C1 and C2 with NLDM input capacitance
- CCS Driver Model Consistency Check
 Compare CCS waveform’s peak time with NLDM delay
- CCS Driver Model Integration Check
 \[I = C \frac{dV}{dt} \Rightarrow \int I \, dt / C = V_{dd} \]
 - Difference between \(\int I \, dt / C \) and \(V_{dd} \) need be < 5%
CCS Driver Model

CCS vs NLDM Consistency Check

- **NLDM_delay = t2 - t1**
- **CCS_delay from driver model = t_peak - t1**
- Consistency can be checked by comparing CCS_delay with NLDM_delay, and reporting the difference.
Interactive Debugger

- Click the selected violation or timing-arc, and the windows of circuit stimulus/netlist and waveform viewer will automatically pop up.
- Users can Edit/Save, Simulate and View Waveforms.
Conclusion
Model Diagnoser™

- Enable quality assurance of cell library .Lib models which are critical for SoC designs.
- Quickly locate the function, noise, timing and power violations in the cell library .Lib model at any PVT.
- Repair .Lib model of latch/flip-flop by automatically adjusting the margins for production yields.
- Easy to use with Interactive Debugger by GUI, and programmable configurations.
- Fully proven for production flow.

Technology Leader in IP Characterization and IC/PCB Simulation
Pre-Driver Input Waveform
For 45nm Cell Characterization

- Pre-driver method is analogous to taking the output of a PWL source and passing it through a low-pass filter.
- Model Diagnoser supports both ramp and pre-driver input.
Criteria for ‘Glitch’ Violation

Noise Check on Latch/Flip-flop

Command Format for criteria of Glitch violation

Glitch 0.6 50 30

Report Glitch violation when
(glitch_height > 60% of Vdd) AND
(glitch_width > 50ps) AND
(glitch_height_in_V * glitch_width_in_ps > 30 V-ps)

Default values for criteria of Glitch violation

Glitch 0.3 10 10
Legend’s Patents
Model Diagnoser™

- United States Patent 7231336
 "Glitch and metastability checks using signal characteristics"
- United States Patent 7131088
 "Reliability based characterization using bisection"
- United States Patent 7203918
 "Delay and signal integrity check and characterization"
- United States Patent 6112022
 "Method for simulating ULSI/VLSI circuit designs"