Model DiagnoserTM

Ultimate Verification, Quality Assurance and Interactive Debugging for .Lib Model of Cell Library

Agenda

Introduction

- Model Diagnoser Flow
- Setup/hold time diagnosis for function/noise violations
- Repairing library model from function/noise violations
- Inaccuracy diagnosis by library model comparison
- Function verification between views of library model
- CCS consistency check of library model
- Interactive Debugging
- The Conclusion

Legend Design Technology

Legend's Products

IP Library Verification/Characterization Products

- Model DiagnoserTM: *Cell Library QA*, *Diagnosis and Debugging*
- Charflo-Cell!TM: Automatic Cell/IO Library Characterization
- Charflo-Memory!TM: *Automatic Memory Characterization*
- Circuit Simulation Products
 - MSIM[®]: Accurate-Spice Simulator for Analog/RF/Mixed-Signal IC and IP, LCD, and PCB/IBIS/Package
 - PCB Design Manager: Integrated Schematic & Simulation Environment with Test Bench Automation
 - Turbo-MSIMTM: *Fast-Spice Simulator*

The Problems Standard /IO Cell Library Modeling

The .Lib model of standard / IO cell library may be

- Incorrectly modeled or characterized
- Inappropriately applied at new PVTs

Need QA process to assure the .Lib timing model

- No functional failures shall be resulted
- Noise on output pins shall be within the margin
- Timing, power and noise models are valid in accuracy
- No over-excessive timings degrading speed seriously

• Need repairing .Lib model to meet the QA criteria

The Solutions Model DiagnoserTM Functions

Setup/hold time diagnosis for function/noise violations
Repairing library model from function/noise violations
Inaccuracy diagnosis by library model comparison
Function verification between views of library model
CCS consistency check of library model
Interactive Debugging

The Necessities

Model Diagnoser on top of Characterization

- Use ultimate validation, different from characterization
 - Verify setup/hold time by directly plugging into final simulation, instead of bi-section with error tolerances

Check internal nodes, not covered by characterization

- Examine glitches and noise strengths on internal nodes, instead of 'output pins only' by simulator's bi-section
- Trust but verify possible errors in characterization from
 - Characterization tools
 - Simulation tools
 - Human mistakes and manual settings

Legend Design Technology

TSMC's Selection Model Diagnoser™

 TSMC Selects Legend's Model Diagnoser for Standard Cell Library Quality Assurance

http://www.legenddesign.com/BW/060909.shtml

 "Legend's Model Diagnoser can help locate the functional issues in the .lib models of TSMC 90nm and 65nm standard cell libraries. We are satisfied with the tool results, and continue to work with Legend to ensure our library quality for advanced nanometer technologies,"

said Tom Quan, deputy director of design service marketing at TSMC.

Model Diagnoser[™] Flow

Technology Leader in IP Characterization and IC/PCB Simulation

Design Technology

Setup/Hold Time Diagnosis Function & Noise Check on Latch/Flip-flop

- Analyze the circuit of each cell by SpiceCut tool, and locate high-risk spots inside the cell.
- Build all possible state patterns based on functions and conditions in .Lib, and set up corresponding stimulus.
- Simulate the cell by applying setup/hold time, and min. pulse width from .Lib, with the stimulus built.
- Verify the simulation results for locating functional failures and noise violations (e.g. glitch)
- Locate over-excessive timings (e.g. min. clock width) to prevent from serious performance degrading

SpiceCut-Cell Functions Circuit Analysis & Pattern Recognition

- Build circuit database of nodes and MOSFETs, and extract subcircuit configurations.
- Locate the high-risk nodes inside the cells to monitor for ensuring the modeling quality.
- Identify the measurable nodes inside the cells before tri-state output for complex I/O cell characterization.
- Perform pattern recognition over the circuits of standard cells, complex cells and customized cells.

'Function' Violation Due to Insufficient Setup Time

Technology Leader in IP Characterization and IC/PCB Simulation

Legend Design Technology

Output-Pin 'Glitch' Violation Due to Insufficient Hold Time

◆ The glitch is of 66% Vdd with the width 37ps.

Technology Leader in IP Characterization and IC/PCB Simulation

Design Technology

Internal 'Glitch' Violation Due to Insufficient Hold Time

◆ The glitch is of 96% Vdd with the width 0.303ns.

Technology Leader in IP Characterization and IC/PCB Simulation

Legene Design Technology

Run-Statistics Examples Function & Noise Check on Latch/Flip-flop

Diagnosing one cell library normally takes 2~4 hours

Cell Library	Number of Latch & FlipFlop Cells	Add N 0.05ns/ 0.	Violation-Free Margin to add	
		Function Violation	Glitch* Violation	
40nm (857 cells)	158	46/4/2	0/ 0/ 0	0.25ns
55nm (1084 cells)	294	2/ 0/ 0	15/ 5/ 1	0.22ns
65nm (814 cells)	228	28/ 0/ 0	13/ 0/ 0	0.1ns
90nm (837 cells)	251	76/71/10	130/ 126/ 1	0.3ns

		Add M 0.5ns/ 1.0	Violation-Free Margin to add	
0.18um (594 cells)	145	51/2/1	0/ 0/ 0	2.4ns
0.35um (588 cells)	139	97/ 45/ 20	0/ 0/ 0	1.7ns

* Report 'Glitch Violation' only when (1) glitch_height > 40% of Vdd (2) glitch_width > 20ps (3) glitch_height_in_V * glitch_width_in_ps > 20 V-ps

Repairing Library Model To Prevent from Function/Noise Violations

- For setup/hold time & min pulse width in .Lib model, the margin shall be automatically adjusted to ensure
 - No functional violations
 - No glitch violations on internal nodes and output pins
 - No over-excessive timings degrading performance seriously
- Margin increment can be by values or by percent
- Margin adjustment for tabular setup/hold time can be determined by the worst corner, by four extreme corners and the central, or by all entries of that table.

Repair .Lib Model Add Margin 0.05ns to Setup Time

Technology Leader in IP Characterization and IC/PCB Simulation

Design Technology

Correct 'Excessive Spike' in .Lib To Prevent from Serious Speed Degrading

- 'Excessive Spike' entry in the table of setup/hold time & min pulse width in .Lib model could cause
 - Difficult to keep monotonic table as required by PrimeTime
 - Large performance sacrifice (e.g. due to min clock width)
- Simulate the cell by applying the 'reduced' setup/hold time & min pulse width, i.e. adding 'negative' margin.
- At the various negative margins, verify the simulation results for locating functional 'success' without noise violations. Then, report the necessary corrections.

Inaccuracy Diagnosis By Library Model Comparison

- Diagnose the inaccuracy of target library by comparing its .Lib model with the re-characterized one by using Model Diagnoser.
- The difference between the tables of parameters will be represented by
 - Table report
 - Statistical report
 - 2D Graphical report
 - 3D Graphical report

Legend Design Technology

Inaccuracy Report Sorted Timing-Arc and Statistical Report

Statistical report can be used for measuring overall quality of target library, at cell or parameter level.

Cell	Template	Pin(s)	Parameter	Diff	Diff %	New Value	Orig. Value	When	Index1	In	dex2	
mffnrb1	falLtransition	Q -> cp	delay	0.0156	51.93	0.04558	0.03		2.1 ns	0 pf		
mffnrb1	falLtransition	QN -> cp	delay	0.0223	45.48	0.0712875	0.049		1.05 ns	0 pf		
mffnrb1	fall_transition	Q -> cp	delay	0.0130	43.43	0.0430275	0.03		1.05 ns	0 pf		
mffnrb1	falLtransition	QN -> cp	delay	0.0201	42.81	0.06712	0.047		0.245 ns	0 pf		
mffnrb1	falLtransition	Q -> cp	delay	0.0105	34.89	0.0404675	0.03		0.245 ns	0 pf		\$50
mffnrb1	falLtransition	Q -> cp	delay	0.0102	33.91	0.0401725	0.03		0.07 ns	0 pf		100
mffnrb1	rise_transition	Q → cp	delay	0.0102	30.98	0.0432225	0.033		0.01 ns	0 pf		
mffnrb1	falLtransition	Q → cp	delay	0.0211	30.97	0.08906	0.068		0.245 ns	0.007 pf		
mffnrb1	rise_transition	QN -> cp	delay	0.0127	30.90	0.0536675	0.041		1.05 ns	0 pf		
mffnrb1	rise_transition	Q -> cp	delay	0.0098	29.74	0.042815	0.033		0.245 ns	0 pf		
mffnrb1	rise_transition	Q -> cp	delay	0.0097	29.32	0.042675	0.033		0.035 ns	0 pf		
mffnrb1	falLtransition	QN -> cp	delay	0.0269	26.66	0.127922	0.101		2.1 ns	0.007 pf		
mffnrb1	rise_transition	Q -> cp	delay	0.0087	26.39	0.0417075	0.033		0.07 ns	0 pf		
mffnrb1	falLtransition	QN -> cp	delay	0.0130	24.94	0.06497	0.052		2.1 ns	0 pf		-
mffnrb1	rise_transition	QN -> cp	delay	0.0102	24.94	0.051225	0.041		0.245 ns	0 pf		-
-	tries .	Avg Diff	Avg Diff %		Sigma	Max Diff	Max Dr	ff as	Min D		Min Diff 9	
Ent	ALCONT A	Roca t o Accesso	100 - 000 000			Constraints	and an and a second	No.Phylane	100000		Will Dill 9	Sector and
•	18	0.0150	0 31.9	765	0.0056	C	0.03	51.93		0.0087		22.1

Technology Leader in IP Characterization and IC/PCB Simulation

Design Technology

Lea

2D/3D Graphic Report Based on Statistics of Cell & Parameter

2D Graphic Report

Technology Leader in IP Characterization and IC/PCB Simulation

Design Technology

Function Verification Between Views of Library Models

 Check the consistency between function description (i.e. .FUNCTION statements) in .Lib and

- Spice netlist at transistor level
- Verilog descriptions
- *Vital descriptions

Report the difference of their derived state patterns

* Vital verification will be released in Q3, 2010

Legend Design Technology

Extract Cell Functions Directly from Spice Circuit Netlist

Standard cells are normally by static designs. Their subcircuits and functions are quite straightforward.
SpiceCut-Cell can partition/recognize those subcircuit patterns, and extract their corresponding functions.
Example: Exclusive-OR (XOR) Cell

$$C = -B; \quad F = -C = B; \quad E = -A;$$

$$D = C * E + F * (-E)$$

$$= (-B) * (-A) + B * A$$

$$Y = (-A) * (-B) + A * B$$

$$Y = A ^{B}$$

Verify Functions in .Lib Against Functions Extracted from Circuits

- Extract the logic functions directly from cell circuit netlist by SpiceCut-Cell
 Validate the FUNCTION statement of each
 - timing arc in the existed .Lib model, by comparing with those circuit-extracted ones.
- Confirm the specifications of related_pin, timing_sense, when, and sdf_cond etc. in the existed .Lib model.

CCS Model Check

 CCS Receiver Model Consistency Check Compare CCS' C1 and C2 with NLDM input capacitance
 CCS Driver Model Consistency Check Compare CCS waveform's peak time with NLDM delay
 CCS Driver Model Integration Check

- $I = C * dV / dt \implies \int I dt / C = V dd$
- Difference between $\int I dt/C$ and Vdd need be < 5%

Leaend

Design Technology

CCS Driver Model CCS vs NLDM Consistency Check

- NLDM_delay = t2 t1
- CCS_delay from driver model = t_peak t1
- Consistency can be checked by comparing CCS_delay with NLDM_delay, and reporting the difference.

Ledend

Technology Leader in IP Characterization and IC/PCB Simulation Design Technology

Interactive Debugger

 Click the selected violation or timing-arc, and the windows of circuit stimulus/netlist and waveform viewer will automatically pop up.

• Users can Edit/Save, Simulate and View Waveforms.

X /legend.us/data1/yw	vu/tower_cell_0114/choo	ose_0511 📕 🗖 🔀	躍 MVIEW v100329 (C) Copy	rright 2010 Legend Design	n Technology, Inc.	
Save As	Run MSim	Run MView	<u>File View Panel Window H</u> elp			
<pre>* File: /legend.us/data1/ywu/tower_cell_0114/choose_0511_rserv1/characterix at ion/decfq1/q/cpn_dly_cel_r.hsp \$.global vdd gnd vss .opt nomsd .opt autostop post tstepoff .lib '/legend.us/data1/ywu/tower_cell_0114/choose_0511_rserv1/spice_mode 1/ts1013dig.lib' tt_12b3 .param vih=1.200 .param vih=0.0 .temp 25.000 VVDD VDD 0 1.2</pre>		cpn_dly_cel_r.a14.wf0	Panel 1. VQ)			
<pre>VVSS VSS 0 vil stimulum section { Piecewise linear way VCPN CPN 0 PAL ' 0n+0.5 tCycle' vil ' 0n+0.5 tCycle' alwey ' 0n+1.6 tCycle' alwey ' 0n+1.5 tCycle' vil ' 0n+1.5 tCycle' vil ' 0n+1.5 tCycle' vil Piecewise linear way vormed a par </pre>	vil vil			v(d)	1.14 0.78 0.42 60 60 0 0 197n 394n 59n 7.87n 98	

Conclusion Model Diagnoser[™]

- Enable quality assurance of cell library .Lib models which are critical for SoC designs.
- Quickly locate the function, noise, timing and power violations in the cell library .Lib model at any PVT.
- Repair .Lib model of latch/flip-flop by automatically adjusting the margins for production yields.
- Easy to use with Interactive Debugger by GUI, and programmable configurations.
- Fully proven for production flow.

Pre-Driver Input Waveform For 45nm Cell Characterization

 Pre-driver method is analogous to taking the output of a PWL source and passing it through a low-pass filter.

Model Diagnoser supports both ramp and pre-driver input

Criteria for 'Glitch' Violation Noise Check on Latch/Flip-flop

Command Format for criteria of Glitch violation
 Glitch 0.6 50 30

Report Glitch violation when

(glitch_height > 60% of Vdd) AND
(glitch_width > 50ps) AND
(glitch_height_in_V * glitch_width_in_ps > 30 V-ps)

Default values for criteria of Glitch violation

Glitch 0.3 10 10

Legend's Patents Model Diagnoser™

 United States Patent 7231336 "Glitch and metastability checks using signal characteristics" • United States Patent 7131088 "Reliability based characterization using bisection" United States Patent 7203918 "Delay and signal integrity check and characterization" • United States Patent 6112022 "Method for simulating ULSI/VLSI circuit designs"

