MSIM®

High Accuracy Spice Simulator

Legend's Products

IP Library Characterization Products

- Charflo-Cell!TM: Automatic Cell/IO Library Characterization
- Charflo-Memory!TM: Automatic Memory Characterization
- IP Library Model Qualify Assurance Products
 - Model DiagnoserTM

Cell/IO Library Quality Assurance and Defect Repair

- Circuit Simulation Products
 - MSIM[®]: Accurate-Spice Simulator
 - Turbo-MSIMTM: Fast-Spice Simulator

MSIM® High Accuracy Spice Simulator

- Extreme accuracy and excellent convergence
- High speed and large capacity
- Extensive model support
- Multi-threaded applications on multi-core computer
- Automatic matrix solver selector for throughputs
- Built-in AWE RC Reduction
- Best price-performance

MSIM® Certifications

 MSIM certified by TSMC's Spice Tool Qualification Program http://www.legenddesign.com/BW/021009.shtml
 MSIM certified by TSMC's TMI (TSMC Model Interface) Qualification Program

MSIM[®] Advantages High Accuracy and Fast Speed

- More than twice the speed of the Standard*
- Same accuracy (less than 1%) as the Standard*

* Standard means the most popular Spice simulator

MSIM[®] Accuracy Benchmark on BSIM4 Model

MSIM [®] Model Support Extensive Modeling Support				
 MSIM delivers silicon-accurate models with proven implementations of 				
* BSIM3	* HiSIM1 and HiSIM2			
* BSIM4	* Philips MM9 & MM11			
* BSIM4 SOI	* RPI TFT			
Direct access of updated SPICE models from				
* TSMC	* Chartered			
* UMC	* SMIC			
* IBM * Tower				

MSIM[®] Simulation Flow

MSIM[®] Multi-Thread Multi-Core and Parallelism Support

- Enable multi-threaded application on a multi-core configuration
- Utilize the multi-thread functions for decomposing and solving matrices, and calculating device model
- Prove its outstanding efficiency on the circuits with a large number of extracted post-layout parasitics

MSIM[®] Multi-Thread Benchmark Data

Benchmark on 2 Quad-Core CPU system

Threads	Run Time	Speed-up
1	319 seconds	1.00 X
2	171 seconds	1.87 X
3	121 seconds	2.64 X
4	97 seconds	3.29 X
5	80 seconds	3.99 X
6	68 seconds	4.69 X
7	64 seconds	4.98 X
8	57 seconds	5.60 X

Technology Leader in IP Characterization and IC/PCB Simulation

Design Technology

Leaend

MSIM[®] Maxtrix Solving Automatic Matrix Solver Selector

- Conventionally, sparse matrix solving technique is used to take advantage of the sparse in circuit matrix for the efficiency
- For nanometer technology, sparse matrix solving technique could be not efficient for the layout extracted circuits with large RC networks
- A Matrix Solver Selector has been developed and implemented in MSIM, for simulation throughputs.

MSIM[®] Maxtrix Solving Benchmark Data

• Benchmark circuit data MOSFET: 6,926 Resistor: 65,662 Capacitor: 11,178 Simulation statistics using Sparse Matrix Max allocated memory = 251 mbTotal CPU time = 36,092.59 seconds Simulation Data using Matrix Solver Selector Max allocated memory = 97 mb Total CPU time = 2,589,.69 seconds ◆ 14X Speed up, and 2.6X less usage of memory

MSIM[®] RC Reduction Layout-Extracted Circuit Simulation

Benchmark on D-Type Flip Flop circuit
 MOSEET: 18 Resistor & Capacitor:

			1,0001
	Standard*	$\mathbf{M} \mathbf{S} \mathbf{I} \mathbf{M}^{T M}$	C om parison
CPU Time	300 sec	10 sec	30 X

The inaccuracy is less than 1%.

Benchmark on SRAM 'RR256x16'

MOSFET: 39,464 Resistor : 200,526 Capacitor: 316,934

	Standard*	M SIM TM	C om parison
Accuracy	3.41 ns	3.39 ns	0.59 %
CPU Time	3,867 sec	317 sec	12.2 X

* Standard means the most popular Spice simulator

Technology Leader in IP Characterization and IC/PCB Simulation

1.000+

Subcircuit Spice Model Memory Usage/CPU Time Benchmark

Subcircuit Spice models are popular in 65nm and below due to its flexibility. Each MOSFET has its own model.
Subcircuit Spice models cause huge memory usage and degrade the performance.

Circuit MOSFET		MSIM		Other Popular Spice	
Туре	Count	CPU Time	Memory Usage	CPU Time	Memory Usage
Data_in.sp	~10K	551 sec	293 MB	2,294 sec	6.7 GB
Access.sp	~40K	3,007 sec	1.4 GB	Can not run	Can not run

MSIM® Applications in IC and IP

- Analog circuit design verification
 - Frequency response and transient analysis for verifying analog circuits like PLL, A/D and D/A converters, amplifiers and IO devices etc.
- Mixed-signal circuit design verification
 - Support Verilog-A behavioral modeling, vector input stimulus and vector output verification
- RF design analysis
- Cell library and memory characterization

MSIM® Ring Oscillator Benchmark

101 Stage NAND2 Ring Oscillator Simulation Results / Comparison

Measurement	Standard* Accurate Mode*	MSIM Accurate Mode	
	Time	Time	Difference
Time_rr	4.2711e-09	4.2527e-09	0.43%
Time_ff	4.2711e-09	4.2520e-09	0.45%
Average Current	-1.4119e-04	-1.4096e-04	0.16%
Power Parameter	-7.2364e-13	-7.1936e-13	0.59%
Time_rf	2.1422e-09	2.1325e-09	0.45%
Duty Parameter	5.0156e+01	5.0144e+01	0.02%

MSIM (Accurate Mode) 98.23 sec Standard* (Accurate Mode) 328.68 sec MSIM Speed-Up 3.35 X

* Standard means the most popular Spice simulator

MSIM® Memory Benchmark

Full-Circuit 'Access Time' Simulation Results / Comparison This SRAM circuit has 21,087 MOS, 73,374 Rs and 44,639 Cs

Access Time	Standard* Accurate Mode		SIM nte Mode		PICE lt Mode		SIM t Mode
Time	Time	Time	Difference	Time	Difference	Time	Difference
O[0] rise	1.4776ns	1.4769ns	-0.0474%	1.4541ns	-1.5904%	1.4849ns	0.4940%
O[24] rise	1.4832ns	1.4823ns	-0.0607%	1.4560ns	-1.8339%	1.4880ns	0.3236%
O[0] fall	1.5448ns	1.5441ns	-0.0453%	1.5219ns	-1.4824%	1.5552ns	0.6732%
O[24] fall	1.5446ns	1.5445ns	-0.0065%	1.5221ns	-1.4567%	1.5633ns	1.2107%

Standard* Accurate Mode is taken as 'GOLD' for comparison

* Standard means the most popular Spice simulator

MSIM[®]

Phase Locked Loop Benchmark

250MHz PLL Circuit Simulation Results /Comparison

Measurement	Standard* Accurate Mode	MSIM Accurate Mode	
	Time	Time	Difference
Lock Time	2.0040e-06	2.0038e-06	0.01%
Last Single Clock Cycle Time	3.9999E-09	3.9971e-09	0.07%
Average Clock Cycle Time	4.0000E-09	3.9998e-09	0.00%
Power	3.2518e-04	3.2295e-04	0.69%

MSIM (Accurate Mode) 2794 seconds Standard* (Accurate Mode) 6096 seconds MSIM Speed-Up 2.16 X

* Standard means the most popular Spice simulator

MSIM® Complex IO Circuit Benchmark

Complex IO Circuit Simulation Results / Comparison

Measurement	Standard* Accurate Mode	MSIM Accurate Mode	
	Time	Time	Difference
Rise delay	1.095e-09	1.095e-09	0.00%
Fall delay	1.007E-09	1.0071e-09	0.01%
Rise slew	2.489E-09	2.496e-09	0.26%
Fall slew	2.493e-09	2.498e-04	0.22%

MSIM (default Mode) 33.94 seconds Standard* (default Mode) 1,550.14 seconds MSIM Speed-Up 45.5 X

* Standard means the most popular Spice simulator

Special Model Interface

Verilog-A model
CMI (Common Model Interface) model
TMI (TSMC Model Interface) model
LCD Panel model
S-Parameter model

LCD Panel Circuit Simulation Dynamic C_{LC} and Advanced TFT Model

• Dynamic effect of Effective Capacitor can be simulated by MSIM

Dynamic effect of Transmittance can be simulated by MSIM

Hybrid Modeling Flow A Complete Device Modeling Solution

Technology Leader in IP Characterization and IC/PCB Simulation

Design Technology

Hybrid Modeling Example Model Parameters by Curve Fitting

MSIM® for Optimization

- A procedure for automatic searching instance or model parameters to meet design goal
- Optimization function can be applied for .DC, .AC and .TRAN analysis
- Optimization method can be native, bi-section or pass-fail
- Flexible measurements in optimization process
- HSPICE-compatible format

MSIM® Portability

Platforms

- Redhat Enterprise Linux
- Windows XP
- Solaris on X86
- Environments
 - JEDAT ASCA
 - SpringSoft Laker-ADP
 - Cadence ADE
 - Mentor DAIC

MSIM[®] with ASCA Jedat's AnalogCreator Platform

MSIM seamlessly integrated into Jedat's ASCA with

- High throughputs
- Optimized simulation and debugging setup

MSIM® with Laker-ADP Silicon Canvas' Analog Design Platform

MSIM seamlessly integrated into Laker-ADP with

- Enhanced productivity
- Speedup of simulation and debugging process

MSIM[®] with Virtuoso

MSIM-Virtuoso Ocean Interface

- The input to MSIM is the circuit netlist from Virtuoso database, and simulation controls from users
- The output from MSIM is the measurement, the list and waveform files including PSF format
- MSIM-Virtuoso ADE Interface
 - MSIM is fully compatible with HSPICE options including option ARTIST and PSF.
 - MSIM can be invoked in the same way as HSPICE does from ADE, after some simple environment setup.

MSIM[®] for Characterization Cell / IO / Memory Characterization

Standard / IO Cell Library Characterization

- Legend Design Technology's CharFlo-Cell!
- Magma's SiliconSmart
- Cadence' SignalStorm
- Library Technology's LibChar
- In-house characterization tools
- Memory Compiler Characterization
 - Legend Design Technology's CharFlo-Memory!
 - In-house characterization tools

MSIM[®] with CharFlo-Cell! Cell/ IO Library Characterization

- The integration of CharFlo-Cell! products and MSIM has been successfully completed
- MSIM has been the primary circuit simulator used in QA flow of CharFlo-Cell! products
- The speed and accuracy of MSIM complements the strengths of the CharFlo-Cell! technology
- MSIM circuit simulator runs multiple times faster than traditional SPICE simulators without loss of accuracy

MSIM® with Charflo-Memory! Memory IP Characterization
Register File 'RF2R1W16X128S' Access Time (5 input slopes and 5 output loadings) 25 Simulation Jobs

	CPU Time	Gains
1 MSIM [®]	7 Hours 17 Minutes	1.0 X
4 MSIM [®]	2 Hours 8 Minutes	3.4 X
8 MSIM [®]	1 Hour 13 Minutes	6.0 X
25 MSIM [®]	18 Minutes	23.9X

MSIM® Compatibility

HSPICE format

Command

% msim –i ckt.sp –o ckt.lis -hsp

The flag -hsp turns on HSPICE format and output naming convention

Spectre Format

Command

% msim –i ckt.sp –o ckt.lis -spectre

The flag -spectre turns on Spectre format.

Eldo Format

Command

% msim –i ckt.sp –o ckt.lis -eld

The flag -eld turns on Eldo format and output naming convention

Conclusion

MSIM is an excellent circuit simulator by

- Innovative algorithms and schemes
- Optimized codes and structures
- Silicon-accurate BSIM3 and BSIM4 modeling
- MSIM certified by TSMC Spice Tool Qualification
- MSIM supports multi-threaded applications on a multi-core computer, with flexible licensing
- MSIM automates the selecting matrix solver for layout-extracted circuits, with much higher speed-up
- MSIM provides best price-performance

Legend Design Technology