CharFlo-Memory!TM

A Total Solution for Characterizing and Verifying Memory IP from Memory Compilers

Agenda

Introduction

- Legend's Products and Roadmaps
- CharFlo-Memory! Characterization Flow
- Memory Characterization with Reliability Check
- SpiceCut Technology
- Performance Optimization
- Power-Gating Solutions
- The Conclusion
- Appendix: ActiveNet Flow

Legend's Products

IP Library Characterization Products

- Charflo-Cell!TM: Automatic Cell/IO Library Characterization
- Charflo-Memory!TM: *Automatic Memory Characterization*
- IP Library Model Quality Assurance Products
 - Model Diagnoser-Cell!TM:
 - Cell Library .Lib Quality Assurance and Defect Repair
- Circuit Simulation Products
 - MSIM[®]: Accurate-Spice Simulator
 - Turbo-MSIMTM: Fast-Spice Simulator

Tools for Semiconductor IP Characterization and Verification

CharFlo-Memory!TM Push-button Characterization Flow

MemChar SpiceCut Library, the tool for automating memory characterization with '.Lib-in and .Lib-out'
 SpiceCutTM:

Critical-path circuit building tool based on layoutextraction with RCs

♦ MemCharTM:

Memory characterization tool with optimization.

High-accuracy circuit simulator

CharFlo-Memory!TM Push-button Characterization Flow

In-House and Commercial Memory Compilers

Legend's products have been successfully used for in-house memory compiler development including 40/45/65/90 nm.
Legend provides 'push-button' characterization tools for

Vendors' Memory Compilers	180nm	130nm	90nm	65nm	45/40nm
Artisan*	YES	YES	YES	YES	YES
Virage	YES	YES	YES	YES	YES
TSMC*	<i>N/A</i>	YES	YES	YES	YES
Faraday*	YES	YES	YES	YES	YES
Virtual Silicon*	YES	YES	N/A	N/A	N/A
Synopsys (Avanti)	YES	N/A	N/A	N/A	N/A
Dolphin Technology*	N/A	YES	YES	YES	YES
VeriSilicon*	YES	YES	N/A	N/A	N/A

* Legend's customer and/or partner

N/A means indicated compilers not available

Major Applications For Commercial Memory Compilers

Incoming QA for high yields

- Analyze the mismatching for re-characterization or not.
- Perform reliability checks (e.g. glitch, signal vs noise)

Instance re-characterization at new PVTs

- Generate accurate instance models (.lib file), instead of the interpolating or extrapolating by compiler models
- Optimizing voltage supply for low-power designs
- Silicon Failure Analysis
 - Eliminate the timing issues for specific instances as possible cause of failure, and focus on other potential problems

What-if Analysis By Using CharFlo-Memory!™

The matrix of possible variations

- PVTs (Process, Voltage and Temperature)
- Spice models
- Bit-cells
- MOS device sizes (e.g. W/L) and parasitic R and C
- Scenarios
 - Locate minimum voltage supply of low-power designs to pass the read-margin check
 - Locate minimum voltage supply of memory banks to pass the voltage-retention check

CharFlo-Memory![™]

A Complete Solution for Characterization

- For both In-house memory compiler and vendors' memory compiler
- For both memory characterization and validation
- For both pre-sim and post-sim characterization
- For both 'critical-path' circuit and 'full' circuit characterization
- Enable automatic layout RC extraction on active-net only, which enhance throughputs tremendously

Instance Characterization Compare with Compiler Models

CharFlo-Memory!TM can produce actual instance model!

Bi-Section Optimization

Bi-Section model in MemCharTM is based upon multicriterion 'binary search' algorithm. The convergence is controlled by the 'BiSect Error'

Reliability Checking 'Glitch' and 'MetaStability' Prevention

Legend Design Technology

Reliability Checking 'Performance Degrading' Prevention

Even functionally working, 'too short' setup/hold time will prolong the access time which degrades chip performance.

Read Margin Check Sense-Amp Signal vs Internal Noise

output and measurement for reliability check

Legend Design Technology

Determine Read-Margin Setting Checking for Yields and Speed

 Determine Read-Margin setting based upon access time, Voltage(Bit-BitB) against noise-margin

Read Margin	Access Time	V(Bit-BitB)	SRAM 8Kx24
1000	4.3212 ns	365.8 mv	Slow
0100	1.8824 ns	95.9 mv	
1101	2.8109 ns	200.6 mv	
0111	1.8824 ns	95.9 mv	
1111	1.6969 ns	68.3 mv	Danger

* Noise margin is 100 mv minimum normally, and 200 mv for the safer.

Wrong Read Margin (RM) setting causes Poor Yield!

Legend Design Technology

CCS/ECSM Model Support Timing, Power and Noise

- SpiceCut can partition memory circuit to receiver, driver, and channel-connected blocks (CCB).
- Based on those partitions, CharFlo-Memory! can characterize CCS Timing, Power and Noise models.

SpiceCut Functions

Circuit characterization

- Extract 'critical-path' circuits for
- Timing / Power simulations
- Access / Setup / Hold Time / Minimum Clock

Circuit verification for

- Worst / best wordlines of decoders
- Exhaustive address pattern simulation
- Coupling analysis

Built-in RC reduction

Recognize Memory Structure

Extract Critical-Path Circuit Using SpiceCut for Access Time

Design Technology

Extract Critical-Path Circuit Using SpiceCut for Setup/Hold Time

 SpiceCut provides multiple automatic methods for extracting critical-path circuits of setup/hold time toward the reference nodes, such as

- Latch node
- Bit-line control node
- Word-line / word-line control node
- Memory-cell internal node
- The critical-path circuit for setup/hold time is a very complete one including 'multiple-paths'. That is good for simulating all PVTs.

'Latch Node' Example For Address Setup / Hold Time

Latch output **N101** can be automatically located, and then critical-path circuits extracted for Address setup/hold time.

'Inside Memory-Cell' Example For Data-In Setup / Hold Time

Internal node N1 / N2 of memory cell can be automatically located, and then critical-path circuits extracted for Data-In setup/hold time.

Design Technology

Critical-Path Circuit for Power

Performance Optimization Segmenting MOSFET Loadings

- When building critical-path circuits, segment those inactive MOSFETs, resistors and capacitors on the nets with heavy loadings, such as
 - Word-lines,
 - Bit-lines and
 - Nodes along critical-path circuits
- Example: word-line segment

Ledend

Performance Optimization Segmenting MOSFET Loadings

45nm 256K SRAM using Subcircuit Spice model, with about 1.7 Million MOSFETs

Accuracy Comparison	Before Segment 50,488 MOSFETs		After Segment 10,292 MOSFETs		Accuracy Differences	
	Rise	Fall	Rise	Fall	Rise	Fall
Access Time	325.94p	351.53p	324.95p	351.98p	0.30%	0.13%
	Before Segment 50,488 MOSFETs		After Segment 10,292 MOSFETs		Improvement	
Speed and	Before 50,488 M	Segment AOSFETs	After 10,292	Segment MOSFETs	Impro	vement
Speed and Memory Usage Comparison	Before 50,488 M CPU Time	Segment MOSFETs Memory Usage	After 5 10,292 / CPU Time	Segment MOSFETs Memory Usage	Impro CPU Time	vement Memory Usage

Power Gating Solutions SpiceCut for Building Critical-Path Circuits

 SpiceCut automatically recognizes Virtual_Vdd and Virtual_VSS in memory circuits with Power Gating On Virtual_Vdd / Virtual_VSS, SpiceCut executes RC reduction and port merging Vdd MOSFET segmenting on loadings • Based on Power Gating structures, Low-VI SpiceCut enables circuit Memory structure recognition Virtual Vse Path tracing/pattern identification

Critical-path circuits generation

Legend and Foundry

- Legend's tools have been adopted and siliconproven by major foundries
 - * TSMC * HHNEC
 - * UMC * Jazz * Dongbu * Tower
 - * Vanguard

* X-FAB

• Direct access the updated SPICE models

* TSMC	* Chartered
* UMC	* SMIC
* IBM	* Tower
* Vanguard	* Jazz

Legend and Library Vendors

 Support push-button re-characterization for Artisan **Dolphin Technology** Virage Faraday (UMC Alliance) TSMC VeriSilicon Virtual-Silicon Synopsys • The instance models using Legend's tools have been silicon-proven by customers and major foundries.

The Conclusion Legend's Memory Characterization

Production and silicon proven including 45nm/65nm Automatically build critical-path circuits and structures from layout-extracted circuit with RC Access memory internals and reliability checking • Optimized critical-path circuits for Power-Gating • RC reduction and 'active-net' extraction for speed • Support CCS timing, power and noise models • Foundry and IP vendors' support Excellent price-performance and automation

Appendix

ActiveNet' Method for Efficient Layout Extraction

Active Nets Flow I Generate Active Nets for Layout Extraction

Active Nets Flow II Characterization based on Active Nets

Design Technology