

The Industry-Leading Solution to Automate, Optimize, and Retarget Custom Circuit Design

Product Review June 2010

- → Analog Circuit Synthesis
- → Circuit Optimization
- → Circuit Re-Targeting
- → Yield Improvement

Do Not Distribute

Copyright 2006-2010, Orora Design Technologies, Inc. All Rights Reserved

About Us

- Company Mission: To provide analog/RF design automation solutions which can
 - Reduce design cycle time 2X to10X
 - Enable design innovation and first-pass success
- Two successful products
 - Arsyn circuit synthesis an
 - Arana behavioral modeling and design verification
- Products fully integrated with
 - Cadence (Connection); Mentor Graphics (Open Door);
 Synopsys (in-sync); Agilent ADS
- Privately funded and profitable since incorproation

 ${\cal O}$ rora Design Technologies, Inc.

Conventional Analog Design Process

What does Arsyn do?

 Critical design factors influence the performance of a circuit under certain environment are

- Circuit topology/architecture (netlist)
- Device performance (model)
- Device parameters (w, I and other geometry)
- Device parasitics and interconnect parasitics
- Arsyn takes <u>above critical design</u> factors as inputs and automatically <u>find the best design values</u> of such variables so that the circuit achieves performance expectation

Arsyn Overview

- Key Benefits
 - Reduce analog circuit design time
 - Enable analog IP reuse
 - Design for Manufacturability
 - Design for Reliability
- Key Features
 - Any circuit topology and any process (CMOS, Bipolar, GaAs)
 - Hierarchical synthesis
 - Fast optimization engine
 - Topology and sizing
 - Parasitic-aware optimization
 - Rapid yield optimization

Summary of Features I

Advanced Synthesis Flow

- Optimization-driven synthesis engine (multi-algorithms)
- Multi-object optimization including circuit spec values and waveforms
- Automatic constraint generation (10x speed-up in set up time), including device matching, OP Saturation, DFM metrics (max/min) and self-heating
- Hierarchical optimization for large analog circuits as PLL/ADC etc
- GUI-input and script-driven automation
- Circuit Topology as Optimization Variable
- Parasitic-aware synthesis from schematic down to post-layout circuit netlists
- Parasitics Support for Silicon-Accurate Synthesis
 - Device Parasitics + Interconnect Parasitics Update during Synthesis

Seamless CDS Integration – Automated Setup Procedure in Cadence

- ADE Testbench Manager
- Goal Manager from ADE
- Synthesis Parameter Selector from Schematic Editor
- Backannotator to Schematic Editor
- Callback device parasitic support

Open AMS Simulation Architecture

- Multi-simulator Support : Spectre, HSPICE, Eldo etc.
- Multi-mode simulation support: Matlab, behavior and circuit simulator cosim
- Simulation Pre/Post-Scripting, Testbench Sequencing

Orora Design Technologies, Inc.

Summary of Arsyn Features II

Combined Local and Global Optimization

- Local optimization for fine tuning and design centering
- Global optimization for IP reuse and re-targeting

Run Data Processing in Initial/Post-Optimization

- Analysis Plot + Radar Chart* + History Display for Multi-Objective Design Boundary Exploration
- HTML/XML design data booking
- Behavioral model/IP generation

PVT Corner Characterization and Optimization

- Easy Setup on Process, voltage, temperature or any custom variables
- Supports up to 4000 corners during optimization

Robustness Design Exploration

- Automated setup of DFM (yield, variability/customized) metrics and goals
- Parametric Yield/Taguchi Quality Loss Factor (On-Target Design)/ Performance Variability/Customized DFM Metrics

Various Foundry PDK Support*

- IBM/JAZZ/UMC/TSMC/SMIC foundry design kits
- Integrated with Arana for circuit modeling & analysis
 - A complete automated design loop for analog/RF/full custom circuits

Arsyn Product Design Flow (Nominal Design)

Leading Analog Design Automation

cktOPAMP Datasheet

Testbench	Measurement Name	Measurement	Characterization	Synthesis	LPV
AC_xf_noise_27C	Avol_dB	DC Gain	40.6/50 min	49 (21%)	39.7 (-2%)
	GBP	Gain bandwidth product	320M/250M min	375M (17%)	289M (-9.6%)
	Phase_margin	Phase margin	86/(65,95)	83 (-3%)	78.9 (-8.4%)
	UGB	Unity Gain Bandwidth	286M/250 min	358M (25%)	285M (-11.3%)
	CMRR	Common mode rejection ratio	319/200 min	451 (41%)	88.45(-72.%)
	PSRR_VDDA_dB	Power Supply Rejection Ratio	311/200 min	310 (0%)	74.63(-76%)
	PSRR_VSSA_dB	Power Supply Rejection Ratio	316/200 min	299 (-5%)	61.25(-81%)
TRAN_27C	Slewrate	Slew Rate	294M/200M min	278M (-5%)	272M (-7.3%)
	Pos_Overshoot	Positive overshoot	60%/10% max	9.8% (-98%)	56%(-4.9%)
	Neg_Overshoot	Negative overshoot	60%/10% max	9.8% (-84%)	54%(-8.2%)
	Full_power_BW	f _{max} (SR)	54M /25M min	50.2M (-7%)	50M (-7.5%)
	Pos_Sett_time_1per	Positive settling time@1%	6.7ns/7ns max	7.5ns (12%)	7.4ns (8.4%)
	Neg_Sett_time_1per	Negative settling time@1%	6.8ns/7ns max	7.5ns (12%)	7.4ns (8.4%)
DC_CMR	IDDQ	IDD power current	1.84mA/20mA max	18.8mA (2%)	1.78mA (-3.0%)
	CMR	Common-mode voltage range	374mV/300mV max	406mV (9%)	377mV (0.76%)
	Cm_min	Common-mode voltage min	-87mV/-200mV min	-200mV (130%)	-92mV(12%)
	Cmin_max	Common-mode voltage max	287mV/200mV max	205mV (-29%)	279mV(-2.7%)
CMFB_27C	phMarginPcmdfbcl	CMFB PM (pos)	13/30 max	9 (-31%)	13.3(1.7%)
	phMarginNcmdfbcl	CMFB PM (neg)	13/30 max	9 (-31%)	13.1(0.26%)
	BWcmfbP	CMFB BW (pos)	43M/50M max	50M (16%)	32M (-25%)
	BWcmfbN	CMFB BW (neg)	43M/50M max	50M (16%)	50.1M (18%)
	Zoutp_800M	Output impedance P	263Ω/300Ω max	237Ω (-10%)	189 Ω (-28%)
Zout_27C	Zoutm_800M	Output impedance M	263Ω/300Ω max	237Ω (-10%)	188 Ω (-28.2%)
HD_27C	THD	Total Harmonic Distortion	7% /10% max	1.3% (-81%)	6.4 %

Orora Design Technologies, Inc.

Orora Proprietary and Confidential

Visualization Analysis On One Example

- TdnDelay is a goal lagging behind the performance target
- The visualation on cost vs TdnDelay indicates 2.0-3.0 nS is the low cost region for TdnDelay. Current 2.0 ns threshold seems to be too stringent for the optimization

Orora Design Technologies, Inc.

Arsyn-RPD Robust Product Design Flow

Performance Benchmarking from Customers

Better solution quality

 found out designs that meet the specs while competing tools fail)

Less simulation runs

- Use typically 10x less simulation runs

Better design flow integration

 Is not a point tool but a complete automation solution for IP reuse, analog migration and analog design productivity improvements

Example: Opt Design Point \neq **Good**

Yield

- The optimized design point from other tool has every output hit the specs.
- The Monte Carlo simulation over with process variation and mismatch analysis indicates a poor yield by this design point (<60%) for some specs

Orora Design Technologies, Inc.

Leading Analog Design Automation

Arsyn Yield Enhancement

Parallelism in Arsyn

- Arsyn used multithreading technology to explore parallelism to speed up its optimization.
- Our experiment shows that the simulation speed per candidate is linearly proportional to user-defined parallel number
- Result of simulation speed for 150 candidates (9 run/per candidate * 150 candidates = 1350 run in total)
 - Shows the speed linearity with parallel factor from 1 to 6

Orora Design Technologies, Inc.

Design Optimization on IBM 90nm Custom Digital

- The design is IBM 90nm custom digital circuit and simulated with NanoSim to reduce the simulation time
- This application uses model selection (lvt fet/hvt fet) to do power vs timing trade-off
- obtained 26% power reduction with minor timing sacrifice.

	After 1 st GA+LMS	Final stop point
time	~4 hours	~15 hours
Power*	20%	26%
timing	Worst -0.34ns	Worst -0.3ns relax

 \mathcal{O} rora Design Technologies, Inc.

6x6 mm > 6000 HBT Transistors 6 b @ 2.4 GSPS

Arsyn automatically searches the design space that is otherwise not possible by designers. -- Dr. M-J Choe Mixed-Signal Group Manager → Five time reduction in design time (reusable)
→ Over 15% improvement in speed, power, SNR
→ Cleaner eve diagrams

Orora Design Technologies, Inc.

Arsyn Demo Outline

MDAC in 90nm pipelined ADC

- Arana Cadence interface, model generation and validation flow
- Key features:
 - multiple testbench support and sequencing
 - PVT corners and DFM
 - CPS
 - PDK callback support
 - Synthesis result visualization
 - Candidate backannotation

90nm PLL

- Hierarchical optimization
- Optimize the transistor-level PLL design in 3 days on a single machine

Arsyn Demo

Orora Design Technologies, Inc.

Leading Analog Design Automation

Comparison with Other Tools

Simulation-based tools

Equation-based tools

- Faster turn-around
- Long preparation time/learning curve
- Not able to optimize large system

Arsyn architecture combines

- Simulation based: Any simulator
- Equation based: Automated equation generation
- Knowledge based.

Feature Comparison with Other Tools

	Competitor	Arsyn	
Cadence Interface	Not able to set two blocks	OK	
Support CDS CB	OK	OK	
BA to CDS	OK	OK	
Support Simulators	Spectre	HSPICE/Spectre/others	
Support CPS	-	OK	
Visualization	-	OK	
Characterization	-	ОК	
Sequencing	-	OK	
Hierarchical Opt	-	ОК	
Sensitivity Analysis	-	ОК	
LPV	OK	OK	
Scripting	-	ОК	
Parallelism/Dist Comp	OK	ОК	

Orora Design Technologies, Inc.

Orora Proprietary and Confidential

Design Candidate Search Capability

1421 iterations

9963 iterations

Arsyn: constantly 10x less iterations than our competitors' in multiple customer design evaluations

Orora Design Technologies, Inc.

Leading Analog Design Automation

Successful Test Cases

Circuit Type	PDK	Process	
Gain-boosted OPAMP	UMC	90nm	\checkmark
LVDS – Transmitter	IBM	90nm	\checkmark
PLL	IBM	90nm	\checkmark
10 bit ADC	TSMC	65nm	\checkmark
SerDes-TX	IBM	90nm	\checkmark
6 bit DAC	IBM	90nm	\checkmark
FC-OPAMP	JAZZ	0.18um	\checkmark
Switch Circuit	AMIS	0.35um	\checkmark
ADC	MAXIM	0.35um	\checkmark

- Arsyn has been successfully used in the design of various analog circuit types with different foundry PDKs
- The practice constantly shows that Arsyn can improve the design quality by 10-20% over the designers while saving significant amount of circuit corner tuning time.

Orora Design Technologies, Inc.

Summary

Arsyn is a useful tool to help circuit designers to

- Increase analog/RF designers and custom digital developers productivity
- Facilitate process migration, circuit topology and testbench reuse
- Ease design trade-off in complex scenarios
- Improve yields for sub-90nm technology node and below
- Compared with other tools, Arsyn has shown
 - Constant performance advantage
 - Better cadence interface
 - More features to analyze and synthesize circuit
 - More flexible 3 party tool interface (HPSICE/MATLAB/MSIM/NanoSim/Eldo etc)

 ${\cal O}$ rora Design Technologies, Inc.