

The Industry-Unique Solution to Complex Mixed-Signal Design Verification

June 2010

Arana

- → Automated Generation and Grading of Verification Intellectual Properties (VIPs) for Custom ICs
- → Turn Your SPICE into a Superfast SPICE
- → Enable Your Verilog Simulator to Simulate Analog Blocks

Mixed-Signal Verification Challenge

- **◆ Digital Function Bugs**
- **♦** Sensitive Analog
- **♦** Power Management
- ◆ C2I3 errors: Control,Configuration, Interface,Integration, and Interconnect

- → Verification Cost Exceeds Design Cost
- → Multiple Silicon Re-spins
- → Delayed Product Roll Out

TI/Intel DAC 2009 Panel:

- (1) Power up
- (2) Control logic
- (3) MSB/LSB switch
- (4) Bias wrong

Industry-Standard Practice: Buy Another Fast SPICE/Computer

Orora Design Technologies, Inc.

Leading Analog Design Automation

Industry Emerging Solution (Strategic)

- → Manual writing models is too tedious, requires expert knowledge on circuits, test benches, systems, languages and simulators
- → Inconsistence between silicon and models cause "false" verification

Arana: Automation, Verification-Smart, and Grading

- Your Verification Intellectual Properties
- → Silicon faithful and pin matched
- → Verification-Smart:

 Self debug on C2I3 errors

 Self-check on circuit operations
- → Efficiency: 100x-1000x faster
- → Compact: 100x-1000x less details (data)
- → Optimized simulatable/non-readabe form
 - * Avoid errors caused by human intervention
 - * Protect your intellectual property
 - * Maximal speed up

Accurate but with less details

- → Point-matched SPICE: too much detail
- → Arana: abstract out un-wanted details

Orora Design Technologies, Inc.

Your SPICE

Your Verilog Simulator

Leading Analog Design Automation

Orora Proprietary and Confidential

Automated uVIP Scoreboarding by Arana

	view1 (model1)	View2 (model 2)	view3 (model 3)	View4 (mode 4)
Power-aware	J	V	X	X
Load-aware	\ \	V	\frac{1}{\sqrt{1}}	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
PVT-aware	√	√	X	X
Noise-aware	X	X	X	X
Interface assertion	V	√	√	X
Self checking	√	Х	√	Х
Spectre/HSPICE	√	√	√	X
IES(WREAL)	X	X	X	√
Speed				
Accuracy				
lOut				
Trise/Tfall				

Confidence in models; Enable metric-driven mixed-signal verification

The RVM (Recursively Verifying and Modeling) Methodology

Pin-Matched Behavioral Model Model Generator

Benefits: Same Flow Same Simulator/Same Test Bench

Automated bottom-up process No need for templates

Divide

- **→** Enable sign off early in the design phase
- **→** Enable incremental sign off

Behavioral Models with "Analog Assertions"

```
`include "discipline.h"
`include "constants.h"
```

module OPAMP_TOP30(

AW, AVS, ORS, DIESID, CFSCIRD, OPINL, OPINL, OPOUIL, OPOUIL, SIR, VANI, VARI, VARI,

electrical

AVD, AVS, CRS, DIESID, CFSCIRD, CPINL, CPINL, CPOUIL, CPOUIL, SIR, VANL, VANZ, VAPL, VAPL,

real DOSHIFT c () OPINL

Differential pins

Wrong bias

Automated inserted analog assertions will detect integration errors in run time!!!

 $V \cap O$

Arana Unique Value Proposition

Enabler for Mixed-Signal SoC Functional Verification

- Most re-spins due to "simple/stupid" errors.
- Analog simulation slows down everything
- Can be100x-1000x speed up over SPICE
- Automated bottom-up/automated process
 - Silicon-faithful: pin-matched to pre-layout/post-layout netlists
 - Fundamentally resolve the inconsistence between behavioral models vs designs
 - Capture all control and configuration models
 - Capture Process-Voltage-Temperature variations
- Hierarchical (Fast SPICE does not cut)
 - Mix and match behavioral models and netIsits
 - Fast
 - Small set of data to enable debugging

Arana Industry Benchmark Results*

Circuits	Foundry Process	# transistor	Transistor-Level Simulation time	Model-Substituted Simulation Time	Speed Up	Accuracy Loss**
XAUI SerDes	IBM 90nm	15,000	>15 days	15 min (100 kbits)	1200X	5%
4-CH 10-bit Source Driver	Sony 16V 2u CMOS	6,000	>3 days	17 min	250X	0.1%
DC-DC Converter	Sony TFT	180	39 min	2 min	20X	0.3%
5 th -order				(second-level) 154 sec	204	<0.6%
Switched- Capacitor Filter	STARC 90nm	371	8 hr 45 m	(top-level) 12.7 sec	2480	<10%
8bit ∆Σ ADC	TSMC 90nm		1.8 hr	23 sec	250X	6%
Custom MCU	TSMC 90nm	12,000	12.3 hr	90 sec	500X	10%
PLL	Samsung 65nm	2109	11 hr 11 min	3 min 44 sec	180X	1%
High-Speed Comparator	IBM 90nm	780	1.5 hr	82 sec	100X	3%
10-bit DAC	DBH 0.13um	19465	1 day 10 hr 4 min	(second-level) 17 min 18 sec	120X	1.62%
TO-BIL DAC	DDII V. ISUIII	13-100	i day io iii 4 iiiiii	(top-level) 3 min	680X	0.5 %

*Cadence Spectre Simulator (Verilog-A behavioral models) **desig

**design specs

4-Channel 10-Bit Source Driver – Waveform Single Step

4-Channel 10-Bit Source Driver – Waveform Staircase

Boeing SerDes Design

Data communication link

Block	Silicon-Calibrated Spec-Driven Behavioral Model		Netlist-Driven Behavioral Model		
	Modeling error	Speedup	Modeling error	Speedup	
VGA	Gain@DC: 0%	25X	Gain@DC: 1.4%	48X	
	Gain@full rate: 0%		Gain@full rate: 4.7%		
Comparator	Delay time: 4%	70X	Delay time: 4.1%	10X	
	Rise/fall time: 3%		Rise/fall time: 2.1%		
Phase	Phase shift: 4%	1260X	Same Model		
Rotator					
Tx Bias	Settling time (90%): 2%	17X	Final value: 0.14%	31X	
Generator	Settling time (99%): 13%				
	Final value: 0%				
Tx DAC	Settling time (90%): 1%	300X	Final value: 0.05%	42X	
	Settling time (99%): 5%				
	DAC step: 0%				
Tx output	Voltage level: 4%	6000X	Voltage level: 0.78%	100X	
driver					
Rx top level	5%	2200X	5%	1200X	
Tx top level	5%	500X	5%	120X	

IBM 90nm PLL uVIP Results

Waveform
Accuracy
Picture here

Speedup

(14 hours) (2 mins 23 secs) (13 secs)

Summary of Arana-Enabled Mixed-Signal Verification

Orora Design Technologies, Inc.

Arana Road Map

Arana 4.5		Q3, 2010			
noise-aware					
Arana 4.6			Q4 2010		
post-layout hierarchical view	I				
Arana 4.7				Q1 2011	
time-domain noise modeling	g				
Arana 4.8					Q2 2011
post-layout flattern view					

Summary

- Arana is industry-first designers' behavioral modeling platform for mixed-signal blocks
 - Generation of verification IPs for custom design
- Has been validated against 50+ benchmark circuits from 20+ customers
 - DAC, ADC, PLL, SerDes, DC-DC Converter, ...
- Arana-enabled mixed-signal full-chip functional verification flow
 - Same simulator, same test bench (no need to change the flow)
 - 100x-1000x faster for complex blocks
 - Analog assertion automated: compatible with digital verification flow
 - Delegate the time-consuming verification task to circuit designers